In vitro reconstitution of electron transport from glucose-6-phosphate and NADPH to nitrite
نویسندگان
چکیده
An NADPH-dependent NO2--reducing system was reconstituted in vitro using ferredoxin (Fd) NADP+ oxidoreductase (FNR), Fd, and nitrite reductase (NiR) from the green alga Chlamydomonas reinhardtii. NO2- reduction was dependent on all protein components and was operated under either aerobic or anaerobic conditions. NO2- reduction by this in vitro pathway was inhibited up to 63% by 1 mm NADP+. NADP+ did not affect either methyl viologen-NiR or Fd-NiR activity, indicating that inhibition was mediated through FNR. When NADPH was replaced with a glucose-6-phosphate dehydrogenase (G6PDH)-dependent NADPH-generating system, rates of NO2- reduction reached approximately 10 times that of the NADPH-dependent system. G6PDH could be replaced by either 6-phosphogluconate dehydrogenase or isocitrate dehydrogenase, indicating that G6PDH functioned to: (a) regenerate NADPH to support NO2- reduction and (b) consume NADP+, releasing FNR from NADP+ inhibition. These results demonstrate the ability of FNR to facilitate the transfer of reducing power from NADPH to Fd in the direction opposite to that which occurs in photosynthesis. The rate of G6PDH-dependent NO2- reduction observed in vitro is capable of accounting for the observed rates of dark NO3- assimilation by C. reinhardtii.
منابع مشابه
Molecular Identification of the Most Prevalent Mutations of Glucose-6-Phosphate Dehydrogenase (G6PD) in Fars and Isfahan of Iran
Glucose-6-phosphate dehydrogenase (G6PD) in humans is in X-linked disorder, housekeeping enzyme and vital for the survival of every cell. It catalyses the oxidation of glucose-6-phosphate to 6-phospho Gluconat in the first committed step of the pentose phosphate pathway, which provides cells with pentoses and reducing power in the form of NADPH. NADPH is required to protect the cells against ox...
متن کاملMolecular Identification of the Most Prevalent Mutation of Glucose-6-Phosphate Dehydrogenase Gene in Deficient Patients in Sistan and Balochestan Province of Iran
Glucose-6-phosphate dehydrogenase (G6PD) in humans is an X-chromosome-linked disorder and housekeeping enzyme, vital for the survival of every cell. It catalyses the oxidation of glucose-6-phosphate to 6-phospho gluconate in the first committed step of the pentose phosphate pathway, which provides cells with pentoses and reducing power in the form of NADPH. NADPH is required to protect the cell...
متن کاملMOLECULAR IDENTIFICATION OF THE MOST PREVALENT MUTATION OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE (G6PD) GENE IN DEFICIENT PATIENTS IN GILAN PROVINCE
Glucose-6-Phosphate Dehydrogenase (G6PD) is a cytosolic enzyme which its main function is to produce NADPH in the red blood cells by controlling the step from Glucose-6-Phosphate to 6-Phospho gluconate in the pentose phosphate pathway. G6PD deficiency is the most common X-chromosome linked hereditary enzymopathy in the world, that result in reduced enzyme activity and more than 125 different mu...
متن کاملMolecular Surveying of the Common Variants of Glucose 6-Phosphate Dehydrogenase Gene in Deficient Patients
Glucose 6-phoshphate dehydrogenase is X-chromosome linked that expressed in all tissues. This is the first enzyme of pentose phosphate pathway were 5-carbon sugar Ribose and NADPH were synthesized by coupled oxidation /reduction reactions and this enzyme is a highly polymorphic enzyme in humans. G6PD deficiency are shown to be the cause of haemolytic effect of Fava beans and primaquine. It soon...
متن کاملMolecular Identification of the Most Prevalent Mutations of Glucose-6-Posphate Dehydrogenase (G6PD) Gene in Deficient Patients in Khorasan Province of Iran
Glucose-6-phosphate dehydrogenase (G6PD) enzyme catalyses the first step in pentose phosphate pathway (conversion of glucose-6-phosphat to 6-phospho gluconat) which provides cells with pentoses and reduction power in the form of NADPH. In the present study we have analyzed the G6PD gene mutations in 76 patients with a history of favism in Khorasan province in Iran. DNA samples were analyzed for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 117 1 شماره
صفحات -
تاریخ انتشار 1998